詳細(xì)介紹
施耐德XS7C40PC440PG接近開關(guān)
霍爾效應(yīng)原理在垂直于外磁場的方向上放置導(dǎo)體,給導(dǎo)體通以電流。導(dǎo)體中的電使金屬中自由電子在電場作用下做定向運(yùn)動。置于磁場中的靜止載流導(dǎo)體,當(dāng)它的電方向與磁場方向不*時(shí),載流導(dǎo)體上平行于電和磁場方向上的兩個(gè)面之間產(chǎn)生電動勢,這種現(xiàn)象稱為霍爾接近開關(guān)傳感器的效應(yīng)。該電動勢稱為霍爾電動勢。
電子受洛倫茲力的作用大小為:FL=EUB
公式中:E-電荷;U-電子平均運(yùn)動速度;B-磁感應(yīng)強(qiáng)度。
電子除了沿電流反方向作定向運(yùn)動外,還在FL的作用下漂移,結(jié)果使金屬導(dǎo)電板內(nèi)側(cè)面積累電子,而外側(cè)面積累正電荷,從而形成了附加內(nèi)電場EH,稱為霍爾電場,霍爾電場強(qiáng)度為:EH=UH/B
公式中:UH-電位差;B-霍爾元件寬度。
由于霍爾電場的存在,使作定向運(yùn)動的電子除了受到洛倫茲力的作用外,還要受到霍爾效應(yīng)產(chǎn)生的電場力的作用,其力的大小為FH=EEH,此力阻止電荷繼續(xù)累積。隨著內(nèi)、外側(cè)面積累電荷的增加,霍爾接近開關(guān)傳感器的電場增大,電子受到的霍爾電場力也增大因?yàn)殡娮铀苈鍌惼澚εc霍爾電場作用力方向相反,當(dāng)二者大小相等時(shí)達(dá)到動態(tài)平衡狀態(tài),此時(shí)電荷將不再向兩側(cè)面累積。
霍爾電動勢正比于激勵(lì)電流及磁感應(yīng)強(qiáng)度,其霍爾元件的靈敏度與霍爾系數(shù)成正比,與霍爾元件的存度成反比。因此,為了提高靈敏度,霍爾元件常制成薄片形狀。若要霍爾效應(yīng)強(qiáng),則希望有較大的霍爾系數(shù),因此要求霍爾元件材料有較大的電阻率和載流子遷移率。一般金屬材料載流子遷移率很高,但電阻率很小;而絕緣材料電阻率*,但載流子遷移率極低,故只有半導(dǎo)體材料才適于制造霍爾元件。目前常用的霍爾元件材料有:鍺、硅、砷化甸、銻化甸等半導(dǎo)體材料。其中N型鍺容易加工制造,其霍爾系數(shù)、溫度性能和線性度都較好。N型硅的線性度,其霍爾系數(shù)、溫度性能同N型鍺。銻化甸對溫度敏感,尤其在低溫范圍內(nèi)溫度系數(shù)大,但在室溫時(shí)其霍爾系數(shù)較大。砷化甸的霍爾系數(shù)較小,溫度系數(shù)也較小,輸出特性線性度好。
施耐德XS7C40PC440PG接近開關(guān)